EE Addsum TAS Premier 7i [c\taspro7'] - [Source Code Editor] oy ||
Eile Edit Program Bookmarks Help

3 =, 2 i) = £ 2 @ o b o &

R Cpen T Save Close Screen Program Reports DataDict | Compile Run " Build Execute

TAS Premier™ 7i
TUTORIAL

TAS DD'IEHIEE'?. 7

Copyright 2004-2025 Addsum Business Software, Inc. Portions Copyright MGM Holdings 1985-2003

Addsum TAS Premier 7i Tutorial

INTRODUCTION

Addsum TAS Premier 7i is designed to be a complete GUI application development tool. It provides
application building tools for both new and experienced programmers.
These powerful utilities include:

Data Dictionary Manager
Database Maintenance Programs
Form Editor

Report Editor

Source Code Editor

Runtime Compiler

Addsum TAS Premier 7i includes over 150 commands, each with many options, and over 230
functions that can be used in expressions. Many of the commands can be compared to macro
functions found in other high level languages. Add to this the ability to create User Defined
Commands (UDCs) and User Defined Functions (UDFs), and you have a very powerful development
tool.

One of the reasons Addsum TAS Premier 7i is so flexible and powerful is that it is built around a Data
Dictionary. The Data Dictionary is a special Addsum TAS Premier 7i data file that is used to keep
track of every specification of every field in every record and file you create. This means that once you
define a field, you do not have to define it again. Each time you want to use that field in a program,
Addsum TAS Premier 7i automatically looks up the specifications in the Data Dictionary. Storing the
specifications in this way greatly increases the ease and speed with which you can create multi-file
applications. By using similar fields with the same characteristics in different files, you can retrieve
related records, such as finding all invoice records based on a given customer code.

Addsum TAS Premier 7i uses Btrieve (now Pervasive), preferably, to perform all data file I/O, record
and file locking in a multiuser system. With Addsum TAS Premier 7i you can typically find any record
in a data file in one second or less. With smaller databases, finding a record can be almost
instantaneous. Saving or updating records is equally fast. In addition, the speed is consistent
regardless of the file size. It takes virtually the same amount of time to save a record in a file with
100,000 records as it does in a file with 1,000 records.

Addsum TAS Premier 7i allows up to 24 different sorts (keys) to be maintained on-line for each
datafile, so you never have to re-sort a datafile just to find a record.

Page 2

Addsum TAS Premier 7i Tutorial

GETTING READY TO RUN THE TUTORIAL
Since this is your first time using Addsum TAS Premier 7i, let’s start at the very beginning.
1. On your desktop there should be three new icons, or a new program group that has been

created in your Start->Programs list. This tutorial assumes that you have the icons on your
desktop. Click on the TP7 Setup icon. The following form will appear:

Screen Editor] TAS 5.1] TAS 5.1 Colors]
zeneral l User Options] Etdail Settings] Source Code Editar]

Default Path

|C:RTaaprn?1 @|
Diata Dictionary Path

|C:1Taaprn?‘4 @|
Initial Program Mame: Iv Initial Program is Main kMenu
|adwhkmenu.rwn ﬂ

startup Company

W Multillser (Record/File locking) [Use Btrieve Memos [TP Active for CB
[lse CodeBase [Use File Manager

et Dev Path =etup Dev Path lcons Ok Apply Cancel

The image above reflects a system that is using the “Btrieve” (Zen/Pervasive/PSQL” engine which is not
provided with the default installation and that is used for Advanced Accounting. To instead use
CodeBase, change the Startup Company to C, uncheck “Initial Program is Main Menu” and blank out the
initial program name, and click on the “Use CodeBase” checkbox.

The display above assumes that you have installed Addsum TAS Premier 7i in the C:\TASPro7\ (or where
C:\TASPro7 appears substitute C:\TAS7i subdirectory, which is the default for the Premier version). Your
data dictionary path may be different. Make sure Startup Company is set to B, MultiUser is checked, and
Use Codebase is unchecked. Note: the above example shows an initial program name and that the
initial program is a main menu program — that will not be the case for purposes of the tutorial and those
should be left blank.

2. Click on the Set Dev Path button. A form allowing you to enter a new development path will
appear.

Page 3

file:///S:/tas7doc/C:%5CTASPro7
file:///C:/TAS7i

Addsum TAS Premier 7i Tutorial

3.

4.

QO®

CA\Taspra7 Tutarial ﬂ|

o Enter a Development Path

Ok Cancel | Help |

Make sure your development path looks like the example above: C:\TASPro7\tutorial. The
program will automatically add the trailing slash (“\") at the end. Click OK. Then click Yes.

This directory was set up for you during installation. You will be back at the main setup
screen. Click the OK button again and the program will exit. You have now setup the
development directory and the proper data dictionary location.

NOTE: You can still access programs in other subdirectories. By defining a development
directory it becomes your default directory until you change it using this same process.

N Open T Sawe Close Screen Program Reports DataDict | Compile Run

B @ o b

-

Click on the TAS 7i icon and the main development screen above should appear. To double
check your setup click on the Program menu choice at the top of the screen. Then click on
the Current Configuration menu item. The screen below should be displayed. Make sure the
values are correct. If they aren’t go back to step 1 above and start over again, because you
won't be allowed to make any changes to these values here; this is just to display the current
information. Click on the Exit button to close the configuration screen and exit the program.

@ Lurrent Configuration

Developrment Direcmrj,r:|C:KTASF'RO?\TUTDRIAL\ |
Data Dictionary Path: |C:\Tasprn?\Tu1nria|1 |

Installation Path: |C:\TASF'RO?’\

You are now ready to begin the tutorial. You can exit the tutorial at any time and restart. Until you
change the Development path using the setup program each time you start Addsum TAS Premier 7i
you will start in this subdirectory.

Page 4

Addsum TAS Premier 7i Tutorial

A BRIEF INTRODUCTION TO DATABASES

Before you begin the tutorial, spend a moment learning about the structure of files in a database and
the tools you might use to manage the information contained in those files.

Database Fields, Records and Files

One way to visualize a database is to think of it as a table of rows and columns. In fact, this is the
classic manner in which databases are described in computer literature. In the example shown below,
each horizontal row of the table is considered a record and contains all the data about that person.
Each vertical column is considered a field.

Fields (columns)

Name Code Address City State | Zip Phone
Brown, Fred BF 14 East 53¢ Boise ID 84056 | 134-783-
9876
Smith, Bill SB 234 Elm St. Seattle WA 98103 | 206-644-
2015
White, Jack WwJ 54 Manor PI. Atlanta GA 43045 | 299-456-
7890
Records

Let's say you wanted to find the address of Bill Smith. First you would go vertically down the Name
row until you found the Smith record. Then you would go horizontally across the columns until you
found the Address field.

One of the main strengths of a computerized database like Addsum TAS Premier 7i is that it can
search thousands of records in the time it would originally take to search just a few.

In Addsum TAS Premier, the term “database” describes a related group of information in an
application. “Data file” refers to a specific file in the database. In a database with one file, the data file
is the database.

File Managers, DBMSs and ADEs
There are three general categories of database programs. Each is designed to do different things.

The simplest form of a database program is called the File Manager. As the name implies, this type
of program is designed to manage a single file at a time. The advantage of a File Manager is that it is
fairly easy to use. The disadvantage is it doesn’t do very much. File managers allow you to add,
delete, and search for records in only one file at a time. Consequently, they aren’t typically used for
serious business applications.

You could use a file manager to computerize the index card file in the previous example, since that
database contained only one file.

But let’s say you then wanted to add a second file such as a Sales Journal to your database. At that
point a simple File Manager would no longer suffice. You would need a DBMS (Data Base
Management System) to manage two or more files. A DBMS is more complicated than a File
Manager, and so can be more difficult to master. However, a DBMS gives you several advantages
over a file manager as you can have multiple files active at the same time.

Even more important, a DBMS allows you to relate files to one another. This is done by selecting
certain fields that appear in more than one file. For example, you might have a Customer File which

Page 5

Addsum TAS Premier 7i Tutorial

contained a field called CUSTCODE (short for customer code). If a related field (perhaps named
S0.CUST.CODE) also appeared in our Sales File, it would be possible to relate the two files. (See the
figure below.)

Sales File Customer File
Date: 01-26-86 Cust Code: wWJ
Date: 01-25-86 Cust Code: BF
Date: 01-24-86 Cust Code: SB
Amount $567.00 Name: Smith, Bill
Cust Code: SB Address: 234 EIm St.
City: Seattle
State: WA
Zip: 98103
Phone: 206-644-2015
Related Fields

Relating files can be very important in creating real world database applications. Let’s say you want to
send a “valued customer” letter to each person in your Customer File who has made a single
purchase over $500. To do this you will need to search both the files shown above. First you will
search the Sales File for records in which the Amount field is over $500. When you find one, you will
need to discover to whom the customer code belongs. You accomplish this by relating the record via
the SO.CUST.CODE field to a record in the Customer file with a matching CUSTCODE field.

The next step up from the DBMS is the ADE or Application Development Environment. ADE’s are
systems used to create other programs (i.e. applications). Typically, ADE’s include a powerful DBMS,
plus utilities, to create custom menus, data input screens and sophisticated reports.

So, Addsum TAS Premier is a very useful program because it can be used as a File Manager, a
DBMS or as an ADE. It combines a powerful DBMS with a programming language and an easy-to-
use “interface.”

Now you're ready to start working through the tutorial. You'll learn how to:

1. Create, link, and maintain data files.

2. Add, change, delete, and search for records.

3. Build and enhance a simple application with a customized data input screen and error-
checking.

4. Create reports to summarize and print your data, and develop a menu for using your
application.

5. Restructure data files and modify an existing application program.

In short, you'll see how easy it is to use TAS Premier.

If you still have Addsum TAS Premier loaded then you are ready to start. If not, please click on the
TAS Premier icon or choose the program via Start->Programs->Addsum TAS Premier 7i.

NOTE: In the following instructions, whenever you see "enter," as in “enter the name” or “enter
CUSTCODE? it simply means type in the relevant data and then press the ENTER key.

Page 6

Addsum TAS Premier 7i Tutorial

PART 1 - CREATING A DATABASE

In this section you will create a Customer data file using the Maintain Data Dictionary option from the
Program menu at the top of the screen.

il Addsum TAS Premier 7i [s:\tas704]] 18] x|

File Edit| Program Utilies Help
3 | ScreenEditor [£ . o m
New | Program Editor F& Reports DataDict | Compile Run Build Execute

Feport Editor F?
Data Dictionany

3 o]

Compile Frogram Fa

BEun F10
Build Program F11
Execute Fl2

Maintain Data Dictionary

Other Data Dictionary Options L
File Descnptor Entity Relationships
Impon/Expont FDs (TAS Merge)

Maintain Defined Fields

Encrypt File

Code Template Editor

File Mar In Use
File Manager Maintenance
Current Configuration

All Addsum TAS Premier files must be ‘defined’ in the Data Dictionary before they can be accessed
by any program. This will tell the program how many fields there are, the type and size of each field,
and what fields, or group of fields, are to be used as keys (or indices).

Using the Maintain Dictionary Option

In this example you will create a database to manage the following information about your customers:

1. Code 6. State

2. Name 7. Zip

3. Company 8. Area Code

4. Address 9. Phone Number
5. City

These nine data fields will form the foundation of your database. After you are finished, you can then
add, change, delete or search for records, and use these fields in programs or reports you create in
the future.

Page 7

Addsum TAS Premier 7i Tutorial

When you choose Maintain Data Dictionary the following screen will appear:

[@ addsum TAS Premier 7i Maintain Data Dictionary] g] 4
Eile Options
[] W w| % |2 H D
Save | Close | Delete]| Print Ezxit Help
Eields | Keys |
Long Field Mame [unique] | Shart Field Mame| Type Size | Dec Chrig | Array Elements |Upper Caze| D escription
|s:ikas7oN A

Type CUSTOMER in the FD NAME field, then press ENTER.

This is the name of the structure for the file you are creating. Through the use of the Data Dictionary
you can have multiple files that use the same structure, also known as the File Descriptor (FD). In
most cases, however, you will always have a file that has the same name as the FD. This isn’t
required but it makes it easier when you are trying to remember the FD and/or file name; both will
have the same name.

After clicking OK, Press ENTER again, or simply click the space under Long Field Name, and the
screen should now look like this:

Page 8

Addsum TAS Premier 7i Tutorial

@ addsum TaS Premier 7i Maintain Data Dictionary . 10l .=l
File Dptions
[cusTOMER A B e & | &S| B b |
Save | Close | Delete| Print Exit Help
Eields | Keys |

Lang Field Mame [unigue] | Short Field Mame| Twpe Size | Dec Chrs | Aray Elements |Upper Case| Description

|s:1tas70y A

Type CUSTCODE in the Long Field Name field. Press ENTER to move to the next column/field.

It is of little consequence what you use for the Short Field Name field, as long as it is unique to the
data dictionary. The internal code base structure needs that identifier, but the programmer will never
look at it; the programmer will only see the Long Field Name, which should also be unique. So you
can type in whatever name you want to use, as long as you don't use it again.

The next entry is the field type. Click on the drop down button for the following choices: A -
Alphanumeric, N - Numeric, D - Date, T - Time, L - Logical, B - Byte, I - Integer, R - Record, M -
Memo. Since this field may contain any printable character including numbers, letters, and symbols,
enter A for alphanumeric.

Next is the field size, which is determined by the largest code you expect to put in the field. In this
case it should be 10, so that the field will allow ten characters.

Next is the number of decimal characters, but because this field is type A (alphanumeric), it is
bypassed automatically.

The next entry is the number of array elements for this field. For this one it is 0 because you're only
keeping one customer code for the record.

Page 9

Addsum TAS Premier 7i Tutorial

For future reference, an array allows you to keep multiple values of the same type, using the
same field name, changing just the element number. This is useful when keeping track of
certain types of information, like sales by month. You might have an array called
MONTHLY_SALES with 12 elements. Element 1 (corresponding to the sales for month
number 1) would be MONTHLY_SALES[1], element 2 - MONTHLY_SALESJ[2], etc. to element
12, MONTHLY_SALES[12]. Since you can use any legal Addsum TAS Premier expression as
the element specifier (the value within the square brackets), this becomes a very flexible way
of accessing field values. For example, using the same field as above the amount of a sales
order might be saved in the monthly sales field as follows:

MONTHLY_SALES[month(date())] = TOTAL_ORDER_AMT

This would save the value of TOTAL_ORDER_AMT into the element of MONTHLY_SALES
that corresponds to the month of the current date. (date() returns the current system date and
month() returns the month number (1-12) of a date value. In this case Addsum TAS Premier
first gets the current system date and then the month number of that date. This is then used
for determining the element number in MONTHLY_SALES. If the date is August 10, 1992
then the element number is 8).

The next entry is Upper Case. Since this is an alphanumeric field you can force the entry to all upper
case characters only. Since this is a code that you will be using to search for customers, you will want
to make sure that all characters are entered in upper case. The codes abc and ABC are not the same
to a computer. You might not check all the possibilities when searching for the customer and the code
‘abc’ would come after any ZZZ codes, so you might not even see it in a list. To force the field to
upper case you can either click on the check box or press the space bar; both will put a check mark in
the box.

For Description, you can enter up to 40 characters. This helps you document the fields within the FD.
Once you are finished with the Description, pressing ENTER will move you to the next line in the grid.

If you made an error or if you want to change something, remember that you can simply go
back to that line by clicking the appropriate row and column. You can also press the ESC key
to exit the editing mode and then the UP and DOWN ARROW keys will allow you to move
around the grid. You can make any changes to an FD as desired since you will be allowed to
decide whether to keep any changes made at the end before the program updates the data
dictionary.

The program automatically moves to the next line. At this point you're ready to enter the next field.
Use the field specifications in the following table for the rest of the fields in the Customer data file.
(The Array sizes are 0.)

Field Name Type Size Dec Chrs UpCase
CUSTCODE A 3 0 Y (Entered)
CUSTNAME A 25 0 N
CUSTCOMP A 25 0 N
CUSTADDR A 25 0 N
CUSTCITY A 25 0 N
CUSTSTATE A 2 0 Y

CUSTZIP A 10 0 Y
CUSTAREA A 3 0 N
CUSTPHONE A 8 0 N

Page 10

Addsum TAS Premier 7i Tutorial

It is very easy to manipulate grid lines. If you want to insert a new line, press the ESC key to exit
editing mode. Then press the INSERT key. A blank row will appear immediately above the current
row. To delete a row again press the ESC key to exit edit mode and then the DELETE key. To return
to edit mode all you have to do is press ENTER when the cursor is in the appropriate column.

Entering Keys for CUSTOMER Database

After you have entered the rest of the fields you are now ready to specify the key fields. Key fields
are important because they will help you search and sort through your files. Click on the
Keys tab, and this screen will appear:

[@ Addsum TAS Premier 7i Maintain Data Dictionary) iy] |
Eile Options
[cusTomER Z & e & | S E b
Save | Close | Delete| Print Exit Help
Fields Keys |
e Name:l j [~ Allow duplicates
[~ Modifiable
Order: I j [~ Ignore Case
|Segment Field Mame ’
Dlew Zave
Edit Cancel
Delete
Clear segment field num:l 1
Go
Estabklish one primary key that weill unicuely
idertify a record in this layout and include 5
suffix such a3 PKEY inthe key name to
uniguely identify it a3 such. Estahklish
foreign keys that relste to primary keys as
nesded using a suffix such as FKEY and
document all descriptor relstionships under
Cptions--= File entity relstionships.
More help |
[s:itas7oy b

Click on the New button to add a new key. This will make the Order default to Ascending, Modifiable
and Duplicates will both be checked, and Ignore Case will be unchecked.

The first step is to enter the key name. For this first one enter CUSTCODE. The key name does not
necessarily have to be the same as a field name; however, if there is only one field as a part of the key
you should use the field name. You can click on the drop down button to get a listing of fields for this
FD.

The next entry concerns whether the key will be sorted in Ascending (increasing) or Descending
(decreasing) order. Normally this will be in Ascending. Press the ENTER key to accept the default.

The Duplicates box option can restrict whether or not duplicate keys can be saved. Since this is the

customer code and you don’t want to allow duplicates, press the space bar or click on the check box
to set this option to no duplicates allowed.

Page 11

Addsum TAS Premier 7i Tutorial

If the Modifiable box is unchecked, then the user will not be able to make changes to the index field
once it has been saved. If you don’'t care whether or not a key value changes after the initial entry, or
you want it to allow changes, the Modifiable option should be checked. In this case we want to allow
changes, so leave this box checked. Press the ENTER key to move to the next option.

If you check the Ignore Case box then when the record is saved the program will set the index field(s)
into upper case before the index itself is updated. This has no effect on the actual field, just the index.
However, by setting the index into all upper case characters the records will sort as though the user
entered all upper case characters. This will make searching for the record by this index much easier.
The user won't have to remember which characters are upper and which are lower case. We use this
feature for the CUSTNAME index.

Any TAS Premier file may have up to 24 different key segments. That may be 24 keys each with only
one segment or one key with 24 segments. To search a file using a different method (or field)
requires that you have different keys. In this case you will end up with four different keys, each with
only one segment. Determining how many keys you should have and how many segments will
make up each key is your decision. However, we recommend that you use as few keys as possible
and keep the size of each key as small as possible for faster file access.

If you have more than one segment in a key it sorts in the following manner: The first field is used as
the primary sort and then the file is sorted further by the following segments. For example, you might
have a key with two segments; the first is the customer code and the second is an invoice date. If you
were to search within a file by that key you would see all records for a particular customer code in date
order. Then when the search reached the end of that customer it would start with the next customer in
order again, beginning with the first sale date for that particular customer. If you wanted the file to be
accessed in date/customer code order as well, then you would create a second key where the first
segment would be the sale date and the next would be the customer code. Then when you accessed
the file using that key you would see all sales for that date in customer order, then the next date, etc.

Enter the Segment Field Name CUSTCODE. Since there is only one segment in this key, simply click
on the Save button. The key will be added to the key list grid (on the left side of the screen). The
information you just entered will still show up since that key will be chosen.

Now enter the other three keys using the data in the following table. The entries are as follows (all are
Ascending, and the key and segment name are the same):

Key/Segment Name Duplicates Modifiable Ignore Case
CUSTCODE N Y N (already entered)
CUSTNAME Y Y Y

CUSTSTATE Y Y N

CUSTZIP Y Y N

If you want to change a key previously entered, click on the appropriate line in the key list grid. The
appropriate information will appear for that key. You can then make any changes you wish, including
moving segments around, inserting and deleting segments, and changing the key name. (Be careful
about changing the key name after a file is created and part of existing programs since the key name
may have been used and will cause problems the next time you compile those programs).

To rearrange the segments of a key name click on the blocks to the left of the segment names,
labeled 1, 2, 3 and so on, and while holding the mouse button down, move the segments up or down
into the desired order. When you release the mouse button the segment will remain in its new
location.

Page 12

Addsum TAS Premier 7i Tutorial

If you change or add a key to a FD you must either Initialize the file (if there are no records
already entered, or at least none you want to keep), Reindex the file, or Restructure the file. If
you have not changed the FD structure you need not Restructure the file; Reindex is the
preferable method in this case.

*Remember that the Save and Cancel buttons to the right will update, but they won't actually save
anything. For that, you need to click the Save button at the top. The same goes for the Delete buttons;
the one on the left won't permanently delete the entered key(s). but the one at the top will.

Initializing the New File

Since this is a new FD, the program will automatically ask if you want to create a new file. Press
ENTER or click Yes.

[@ create/Initialize File Program 10| =|
File Marme: Extension: FD Marme: Rec Type:
[cusTOMER I E CUSTOMER ~-| [B =]
Path:
|CATASPROZATUTORIAL | e
Initialize |
Description:
| Exit |
DD Loc: s:itas70y 4

NOTE: It only automatically asks if you want to create a new file when you have just created a new file
descriptor. Otherwise, you must go to Options and then Initialize.

The screen above will appear The fields are all self-explanatory except for the Rec Type, which
simply tells Addsum TAS Premier what type of field this is. Btrieve files are type B, while CodeBase

files are type C. The initialization program defaults to type B. Change both the Extension and Rec
Type to C for CodeBase files.

NOTE: In Btrieve type files the File Name and Extension are put together to get the entire file. So, if
the extension was B and the Rec Type was also B the above would be CUSTOMER.B. However,
CodeBase files use the extension DBF at all times. The Extension value in this case is more used for
which company files are being accessed since you have the capability of keeping separate sets of
files for each company. In TAS Premier file names (not including the extension) are limited to 32
characters. The path is limited to 128 characters but can be any legal Windows path.

To continue with the process click on the Initialize button. This must be done before any data can be
entered. After the initializing process is complete the fields above will be cleared. Press the Exit
button to return to the Data Dictionary Maintenance program. Press the Exit button in the Data
Dictionary Maintenance program (also referred to as MDD).

This completes Part 1 of the tutorial.

Page 13

Addsum TAS Premier 7i Tutorial

PART 2 - MAINTAINING A DATABASE

Now that you have created a CUSTOMER database with Addsum TAS Premier, you can start using it
right away. You can add, edit, and delete records and generally keep things up to date. This type of
activity is known as “maintaining a database.”

In this section you will edit the customer data file using the Maintain Database option from the
Utilities menu. The following screen will appear:

_ig/x]
File Edit Display
File: name: I~ Choose fields to display Sort by

[T Sequential (ho key)
[CUSTOMER.B] | = i

| ||] =]] Ext |

| Y

The first entry you will make is the file name. Click on the look up button and all of the files in your
data dictionary will be listed. In this case you want to choose CUSTOMER.B. If you using CodeBase
files, enter CUSTOMER.C (or CUSTOMER.DBF).

In the future, if you have many files, you can enter one or more characters before you click on the look
up button to find the desired file faster. You can also enter the entire file name. Don’t forget the
extension.

Choosing Fields to be Displayed

Once you have chosen the file, click on the Open File button. The following screen will appear:

Page 14

Addsum TAS Premier 7i Tutorial

00

Source Deztination

ICUSTCO0E
CUSTHAME
CUSTCOMP
CUSTADDR >
CUSTCITY S—
CUSTSTATE
CUSTZIP
CUSTAREA
CUSTPHOME

(] | Cancel
4

The fields in the Source list are all those available. You can move them over to the Destination list
either by moving them all over by clicking on the double right arrow (>>), or clicking on an individual
field (or fields by holding down the SHIFT or CTRL key while clicking on the field(s)) and then clicking
on the single right arrow (>) to move it (or them) over. You can move them back by doing the same in
the Destination list. You can also rearrange the fields in the Destination list by using a standard drag-
and-drop process. The order the fields appear in the Destination list will determine how they appear in
the editing grid. Each field is a separate column in the grid.

In this case you're going to choose all the fields, so click on the double right arrow and then click on
the OK button to pull up the following screen:

The chosen fields make up the columns in the grid, but there are no records in this file so there are no
rows in the grid. The keys available for this file are in the “Sort by” drop down box to the right (in this
case, just CUSTCODE).

If there were records in this file you could search for them by entering characters in the Fast search
field on the left. As you enter each character the program will find the record that matches most
closely. If you delete characters the search routine will move backwards.

To the right of the Key List is the Edit check box. If you check this option the grid will go from search
mode to edit mode and will allow you to add, change or delete records. Since you want to add new
records, go ahead and check the box and you will now be able to do so.

At the bottom of the screen is a standard navigator bar. By clicking on the appropriate navigation
buttons on the left side you can move to different rows within the grid, save changes made to a
record, delete a record or add a new record (row) to the end of the grid.

NOTE: If you modify a record and save it (either by moving to another row or clicking on the Save
Record button) you will not be able to move beyond the rows you have already visited. The reason for
this that the records you have already pulled up may now be in a different order. Since you might
access records in the new order, the program controls which records can be displayed. To eliminate
the restrictions click on the First button (or press the Home key on the keyboard). The records will re-

Page 15

Addsum TAS Premier 7i Tutorial

organize as appropriate and you can return to edit mode if you wish.

Add a Record to a File

l (@ Maint ain Database = _l= =
| Fle Edt Duplay

Frst search r | Sort by r e

| | o =

CUSTCODE [CUSTHAME |CusTCOMP [cusTanoR |

Sibas Tt st am s
18] 3
| I J | + | = | b | Ren: | 0 Tott | 1 Exit

AT TEMER D

After you enter the file name you should see the screen above, with the the name of the open file in
the status bar at the bottom.

Make sure the 'edit' box is still checked, then press the ENTER key to start editing the CUSTCODE
field. Enter 001. After you press ENTER the cursor will automatically move to the CUSTNAME field,
just like it did when you entered the original fields before. For the customer name enter Last, First
M., then Customer Company (CUSTCOMP), 12345 Generic Street (CUSTADDR), Anytown
(CUSTCITY), UT (CUSTSTATE), 55555 (CUSTZIP), 555 (CUSTAREA) and 555-1234
(CUSTPHONE). After you have entered the CUSTPHONE value press the ENTER key. The cursor
will move to the next row, automatically saving the one you just entered. Clicking on the Save button
(the plus sign) in the Navigation bar also saves any information.

NOTE: Until you move to a different row either by adding a new row at the end of the list as you did
above, by moving to a row previously entered or by clicking on the Save button, the data you enter will
NOT be saved to the file. This applies to both new records or changes to existing records.

Enter three or four more customers using your own data.

Finding Records in a File

Now that you have created a CUSTOMER database and saved some records to it, you can begin
experimenting with some of the features of Addsum TAS Premier.

As mentioned earlier in this manual, Addsum TAS Premier can typically find any one record in one

second or less. TAS Premier does this by searching for records according to key fields. Recall that
when you designed the CUSTOMER database, you designated four fields to be keys. They were:

Page 16

Addsum TAS Premier 7i Tutorial

CUSTCODE
CUSTNAME
CUSTSTATE
CUSTZIP

This means you can search for records in the CUSTOMER database by customer code, customer
name, state or zip code. You could also start at the beginning or the end of the file and sift through the
records one by one, but of course this would be more time-consuming than searching with a key. In
this program the keys are listed in the “Sort by” drop down box. Since the first key is the default,
CUSTCODE s listed as the active key when the file is opened. To search for records in the file you
have to be out of Editing mode, so uncheck the box.

If you want to search on a different index all you have to do is click on the “Sort by” drop down box and
choose one of the keys in the list. If the first field in the key is of a different type than you are currently
searching (e.g. numeric versus alphanumeric), the Fast search field type will change accordingly, the
first column will change to the new key field and you will start over at the beginning of the file using the
new key.

When you need to sort through the records in the data file to find a particular one, you can use the up
and down arrow keys to go through them one at a time. The Home key will move you back to the very
first record, and End to the very last. Note that you do not have to be in editing mode to use these
keys, and you can always use the navigation buttons at the bottom, as well.

Change (Edit) a Record

What happens when one of your customers moves? How do you change their address? It’s really
very easy. Make sure the Edit box is checked. Then you can either simply double-click on the
customer field you wish to change, or click it once and press Enter. Clicking on the Save button or
moving to a different row will save the data changes.

Delete a Record from a File

Make sure the Edit box is checked, find the record you wish to delete, highlight any part of it (whether
the code, the company name, the zip, etc, it doesn't matter), then either press the Delete key or click
on the Delete button on the navigator (the minus sign).

When you are finished click on the Exit button. This will close the WTADATAM program and
completes Part 2 of the tutorial.

Page 17

Addsum TAS Premier 7i Tutorial

PART 3 - CREATING A NEW SALES PROGRAM

In this section you will learn how to use the Screen editor and the Program editor to build an
application called SALES, which is really a simple sales journal. You can use it to record daily sales
activity including Order Number, Customer Code, Sales Amount and other pertinent information. In
later parts of the tutorial, we’'ll learn how to add a menu and report to this application.

TAS Premier allows you to create complete applications, not just simple databases. Let's take a
moment to talk about what an application is. In its most basic form an application is a program
combined with at least one customized data input screen and one database file.

The real significance of this is the customized data input screen. In TAS Premier the screen editor is
a true WYSIWYG (What You See Is What You Get) application; whatever you see in the design
environment is what it will look like when you run the program.

There are generally two parts to any TAS Premier application: a screen or form and a source file. The
file extension for screens is .DFM and .SRC for source files. You can have an application with
multiple screens, one or more report formats and even one that has no screens at all. However, in
this case, we’re going to have a single form and a single source file. When creating forms, little work
need be done in the source file because you can place most of what you want the user to see right
into the field objects themselves. Once you have the screen and source file, you can then compile the
program. This creates a RWN file. When the program has run, the runtime uses the RWN and the
DFM.

NOTE: The forms are not part of the compiled program for a very important reason. Once you have
compiled the source file you can continue making changes to the forms without having to recompile.
As long as you don’t add a field to the screen that hasn’t been referred to in the program, you never
have to recompile. So, you can change colors, text, location, remove fields, etc.

Design your Database on Paper First

The first and most important step in building a database application is to design it on paper first. Doing
this will most likely save you some time and frustration later on.

A good place to start is by listing the types of data that will make up your application. Here’s a list of
what you will generally need in our SALES example:

1 - Order Number 7 - Company Name

2 - Date of Transaction 8 - Customer Company
3 - Sales Amount 9 - Customer Address
4 - G/L Account Number 10 - Customer City

5 - Customer Name 11 - Customer State

6 - Customer Code 12 - Customer Zip

The next thing to determine is how the data is going to be stored. In this example, you will be entering
sales order records based on the customers' purchases. You already have the customer records from
the previous sections, so you do not need to keep the customer specific information in the sales file.
You do, however, need to keep the Customer Code in the sales file so you can link (relate) the sales
records to a specific customer.

This does two things for you: First, it reduces the data entry required to enter a sales order. When
the Customer Code is entered, the program will find the corresponding record in the customer file and
display the appropriate information. You will be adding the code to do this later. Secondly, it reduces
the amount of disk space required to store our application. Each file stores only the data and fields
necessary to link to other files in the application.

Page 18

Addsum TAS Premier 7i Tutorial

The following table shows how the data you are keeping track of will be stored.

File: Sales Order File: Customer

Fields: Customer Code Fields: Customer Code
Order Number Customer Name
Order Date Customer Company
Sales Amount Customer Address
G/L Account Customer City

Customer State
Customer Zip
Customer Area Code
Customer Phone

The Customer file already exists, so you will only need to enter the Sales file. The first thing you need
to determine is the type and size of each field in the Sales file. As ever, the size of the field is
determined by the largest entry you expect to put in that field. For example, you wouldn’t make the
Sales Amount field only four characters long, since that would limit the sales amount to a maximum of
9.99.

Here are the data types, lengths and key types for the SALES file. Use Maintain Data Dictionary to
create a new field named SALES. Refer to chapter One for help if needed.

Data Field Name Type Size Dec Up
Order Number SONUMBER R 6

Date of Transaction SODATE D 8

Sales Amount SOSALESAMT N 9 2

G/L Account Number SOGLACCTNUM A 6 Y
Customer Code SOCUSTCODE A 3 Y
Key/Segment Name Asc/Desc Duplicates Modifiable = Ignore Case
SONUMBER Asc N Y N
SODATE Asc Y Y N
SOCUSTCODE Asc Y Y N

NOTE: In the field information above we don'’t include the Short Field Name. Just press the ENTER
key when you’re in that field and accept the default value.

The keys specified allow searching and reporting based on the Order Number, the Date of
Transaction, or the Customer Code. Note that we now allow duplicates of the Customer Code. Since
you can have multiple sales for a single customer you need to allow duplicates here; however, we still
don’t allow the code to change for the same reasons we had when setting the Customer Code key.

The final thing to design on paper is what you want the computer screen to look like. Often you can
think of good ideas by looking at the paper forms around your office. For example, if you were
building an invoice tracking system, you might design the computer screen so it looked like your paper
invoices. With Addsum TAS Premier you have the ability to make the screen look any way you want.

Page 19

Addsum TAS P

remier 7i Tutorial

Create the Form

Now that you know what you are going to keep track of in your database, you are ready to use the
Screen Editor to create a data entry form.

From the Main Menu click on the Screen icon. A blank screen will come up, but if you look at the
status bar at the bottom you will see Screen Painter in the first section. You can always refer to this
section to make sure you’re in the right place.

Now click on the New icon (it's the first one in the menu bar). The screen below will appear. Your
screen layout may differ depending on your screen resolution.

Filz Edit

IE:'f.f.i\ddsun'_l TAS Premier 7
Frogram Utilities

ﬂelp

Screen Options

=l&]

0

e

=
Open

8 © [5 O
Save Close

-

Screen Program Reports DataDict Cm:npi\e

&3 P £

> o |
Run Build

Execute

Mew Screen

Dbject Inspector

Properties |
CAppearance

EditForm1: TEditForm?

Component Palette

3

Dat= | Fom | Addtional| 2P | Chats|
TAS TAS TAS

TAS TAS TAS TAS

=

| Caption
Calor

Mew Screen
[BtnFace

Cti3D

"

Cursor

crDefault

= Behavior

Enabled

'7

Visible

W~

= Font

EFont

(TFont)

FarentFont

=

I Hint

Hint

MNew Screen

ShowHint

=

EMisc

HelpCaontext

0

MName

EditForm1

Fopuphenu

= Other

AlphaBlend

F

AlphaBlendy:

255

Eanchaors

|akLeft,akTop]

AutoScrall

'7

EBarderlcons

[biSystemtenu biMinimize biMaximize]

BorderStyle

bsSizeable

Borderyidth

1]

ClientHeight

522

Caption
Returns/sets the
object’s icon.

text displayed in an objects's title bar or below an

iy

=
iriiNew Screen

This screen is basically a blank canvas. You can put anything you want on it. Above the screen is
what is called an object palette. There are three different tabs that make up this palette: Data, Form
and Additional (these were called TASWin, Standard and Additional in TAS 6). Each of these is
described below:

Data Page (formerly TASWin)

TAS

TASEnter - Use this object to enter any type A (alpha - string) field. There are other
objects to enter numbers, dates and times, but you can use this object to enter any

value in your program.

Page 20

Addsum TAS Premier 7i Tutorial

-]
I
n

I
n

TAS

[
m

TASNumEnter - Use this object to enter any numeric (N, B, | or R) type field. There
are other objects to enter strings, dates and times.

TASComboEnter - This is a special version of the standard TASEnter object.
Using this you can allow the user to enter a value 'normally', and/or by chaining to a
program routine when the user clicks on the button.

TASDateEdit - Use this object to enter any type D (date) field. There are other
objects to enter numbers, strings and times.

TASTimeEdit - Use this object to enter/edit time values. You can also include a
check box as part of this object. NOTE: The TASTimeEnter object is
recommended for usage instead of this. The TASTimeEdit was retained strictly for
compatibility with early versions.

TASTimeEnter — This is a newer version of the TASTimeEdit object. It allows for
more flexibility when entering time and hours and is the recommended object to
use.

TASDataGrid - This may be the most important object available. This will display a
list of records or array field values on the form in a certain order in columns. You
can allow the user to delete rows (records or array elements), insert rows (array
elements only), add new rows to the end of the grid, and, through the use of the
DATA_GRID command, add columns, remove columns, shift them around, etc.

TASDGColTemplate - This is a duplicate of the TASDGIltem (Columns) in a
TASDataGrid object. Through the use of this object you can add to or update an
existing grid through the use of the DATA_GRID command. This is a non-visible
object.

TASComboBox - This object is similar to the TASEnter with a few extra options.
You can create a list of values that user can choose from by clicking on the drop
down button while typing.

TASCheckBox - Use this object to replace a standard Y/N question. If the user
checks the box the returned value will be Y; if unchecked, N will be the value. You
can also make the attached field a type L (logical). In that case the object will return
True (clicked) or False (unclicked).

TASRadioButton - The major difference between this object and the
TASCheckBox is in usage. Generally, you would put two or more TASRadioButton
objects on a TGroupBox. The group box allows only one radio button to be chosen
at a time. Using this, you can give the user multiple choices with the knowledge
that they can only choose one.

Page 21

Addsum TAS Premier 7i Tutorial

-]
I
1]

5

-]
I
un

I

-]
I
i

i

Form Page

G S

H

L o

TASNavigator - This is a special object that provides the user with a group of
buttons that can scroll through the records in a file, delete a record, save a changed
record or refresh a record from the file, even after changes have been made. Use
the NAVIGATOR command to link this object to a file and key. This is required
before this command will have any effect.

TASStrList - This object can be used specifically to create a string list. To
manipulate the list you can either use the appropriate property editor or the
STRINGS() function. This is a non-visible object.

TASMemo — This object is used in CodeBase files where you have included a
Memo field as part of the FD. It acts as a small word processor and allows you to
change and add memos directly to a file.

DualListDialog - This is a non-visual object at design time that can display a very
useful dialog at runtime. To execute this dialog you will need to use the
DUAL_LIST_EXEC() function. Refer to this for an image of what the dialog will look
like to the user. You will also use the STRINGS() function to determine what
options the user has chosen, and perhaps to set the options (strings) the user has
to choose from.

Label - This object will allow you to put a fixed string on the form. It is the simplest
of all objects that you will use and, along with TASEnter, probably one of the most
used.

Image - Use this object to display an image on the form.

Button - This will display the standard Windows button on the form. The user will
be able to 'click’ on this button (click while the arrow is over the object) and have
this execute an Event that will call a routine in your program. This is a common
object and will probably be used often on your forms.

GlyphBtn - This will display a slightly different Windows button on the form. In this
case the button can have a glyph (.bmp graphic) that is part of the button along with
the caption. If you don't include the graphic this is identical to the standard Button
object. The user will be able to ‘click’ on this button (click while the arrow is over the
object) and have this execute an Event that will call a routine in your program.

Shape - This object will allow you to draw a simple shape on the form. It can be
used in the same manner as the Bevel — to put a box around an object or group of
objects. Other than that, it has no other purpose.

Bevel - Use this object to put a bevel around entry objects or other screen objects.
Even though this is a visible object there is no interface with the user other than
beautifying your form.

Page 22

Addsum TAS Premier 7i Tutorial

=

.

GroupBox - This object is used in connection with TASRadioButtons. When
multiple radio buttons are placed on a single group box, the user will be able to set
only one of the options active at a time.

Panel - This object is similar to the Bevel in that it can put a border around other
objects, but it has other uses as well. The types of styles available are greater than
with a bevel and it 'owns' the objects placed on it. This means that if you set the
Visible property of the panel to .False., all objects that are on the panel
automatically become invisible also. The same applies to the Enabled property.
This can be very useful when you know you want to effect a group of objects the
same way at the same time.

NOTE: The Panel object can also be used as a button since it has a CLICK event
just like a button. This is very helpful when you want to use buttons that have a
different background color rather than a standard button. You can also place both
an image and text (Label) on the panel object.

Additional Page

)

i’

Y|

MainMenu - This object creates the menu that appears at the top of the form. The
items that make up the menu are actually Menultem objects. You create those by
using the MenultemEditor.

PopUpMenu - This object creates a menu that appears when the user right clicks
on an object (you must specify the Popupmenu object name as the PopupMenu
property). The items that make up the menu are actually Menultem objects. You
create those by using the MenultemEditor.

Memo - Use this object to put a miniature word processor on your form. If you want
to allow your user to enter messages or notes, etc. you would use this object in
connection with the STRINGS() function. This is different from the TASMemo
above in that it cannot be connected to a field.

StatusBar - This object is generally used to display information to the user at the
bottom of the form. You can split up the bar into panels, each of which can be
individually modified. The panels that make up the menu are actually StatusPanel
objects. You create those by using the Status Bar Panel Editor.

ToolBar - This object creates a tool button bar that appears at the top of the form.
The items that make up the bar are actually ToolButton objects.

AlarmClock - This object will place a clock on your form. It can be either digital or
analog in shape and can be used to set an alarm that will call a routine in your
program. If you want to execute an event at a regular interval you should use the
RtnTimer instead of this object.

Page 23

Addsum TAS Premier 7i Tutorial

RtnTimer - This won't appear on your form at runtime; however, it can call a routine

in your program at a semi-regular interval. If you want to execute an event only
once a day at a specific time your should use the AlarmClock instead of this object.
This is a non-visual object.

NOTE: In the following documentation, the above objects may be referred to with a “T” before them,
like TTASEnter for TASEnter, and TLabel for Label.

Object Inspector

On the left side of the screen editor is the Object Inspector. Each object has properties. These
properties can generally be set either at design time (what you’re doing now) or runtime (when the
user is running the program). To set them at design time you enter or change the value in the field
next to the property name. Each property has been defined in the help file (documentation) for this
object. To display that information click on the Help menu option at the top of the screen. Click again
on TAS Premier 7i Help. A standard Windows help box will display. By entering the name above, the
appropriate help screen will appear.

The Object Inspector will always display the information for the current object. The name of the active
object, and its type, will show at the top of the Object Inspector.

Adding/Moving Objects on the Form

To place an object on the form, click the component icon and then click on the form to place the
object. A default version of the object will be displayed. You can then change the size by clicking on
one of the sizer (or grabber) blocks that surround the object and, while holding the left mouse button
down, move the mouse as appropriate.

Once it is on the form, you can move the object anywhere on it by clicking anywhere inside the object
and, while holding the left mouse button down, move the object where you want it. As you’re moving
the object an outline shape of the object will move with the mouse. When you release the mouse
button the object will ‘move’ to the new location.

Another way to move or resize the object once it is on the form is to change the property values that
apply, accessed in the Object Inspector. These are Top, Left, Height and Width. All values are in
pixels with the top left of the form position Top=0 and Left=0.

Multiple forms

You can have more than one form open at a time. Each form that is opened, or created when you
click on the New button, will be on their own tab. The name of the forms are shown on tabs. To move
between forms all you have to do is click on the appropriate tab.

Saving/Closing forms

To save an open form click the Save button. If this is a new screen a standard save file dialog will be
displayed and you will be able to specify a form name and path. You can also save an existing form to
a new name by clicking on the File->Save As menu option. Again, the save file dialog will appear and
you can enter a different name, and possibly a new path, for the form. This allows you to easily reuse
current forms and create new ones with minor or major differences.

You can also close the form without saving it by clicking on the Close button. If the form has been

changed you will be given the chance to save the form before it is closed. The same applies if you
exit Addsum TAS Premier completely and there are forms open that have been modified.

Page 24

Addsum TAS Premier 7i Tutorial

Creating the Sales form

To add the following objects to the form, click on the appropriate icon on the palette and then click on
the form. If you click inside the object, and hold down the left mouse button, you will be able to drag
the object anywhere on form. While you're moving the object the left and top coordinates will be
displayed in a little box immediately under your mouse cursor. It will be in the form of Left, Top. Or,
you can enter the appropriate numbers directly in the Left and Top properties in the Object inspector
(Object Inspector). The same applies to the Width value. As you adjust the size of the object the
Width and Height values will be displayed in the form of Width x Height. As always, the numbers are
in pixels.

The first step is to make the form itself the correct size. Depending on your screen resolution, this will
probably mean making it smaller. Move the cursor to the lower right corner until it becomes a two-
headed diagonal arrow. Hold the left mouse button down and move this double arrow toward the
upper left corner. Unfortunately, you won't be able to see the size of the form as it grows smaller;
however, you can refer to the ClientHeight and ClientWidth values in the Object inspector to see the
results. You can also change those two values directly, rather than using the mouse. Either way, you
want to end up with ClientHeight = 235 and ClientWidth = 541.

While you're still on the background form, enter “Sales Order Entry” in the Caption property. This will
be displayed at the top of the form.

NOTE: Whenever you display an alpha string for entering into a property it will be surrounded by
quotes. However, when you actually enter the value do not include the quote marks.

Let’s put the first text and field on the form; we’ll do the text first. Click on the Standard tab on the palette, then
click on the A icon (Label object). Move the mouse cursor anywhere towards the upper left corner of the form
and click the left mouse button. This will put a Label object on the form with the default name of Labell. The
name will also be put into the Caption property so the name will be displayed as the visible part of the text on
the form. Now click somewhere on the Labell text (inside the outline created by the grabber blocks) and, while
holding the left mouse button down, drag the object so that the number under the mouse pointer is 40, 24. You
can also enter the appropriate property values. If you’d rather do that, then the values are Left = 40 and Top =
24.

In the Caption property enter the value “Order Number:” Now the Label object on the form should show your
text entry. We’re ready to move on to the actual field object.

Click on the Data tab on the palette to get back to the TAS field entry objects. Since this is a numeric type field
we’re going to use the TASNumEnter object. Click on the icon with the ‘##’ inside the entry block. This should
be the second icon from the left. If you move the cursor over the icon the object name should appear as a hint.
As you did with the Label object, click on the form after you've clicked on the icon.

NOTE: The TASNumEnter object automatically creates a button that can be used in your programs to lookup a
value, etc. However, in this case, and in the others we use in this tutorial, we have no need for the button to
appear. So, in the Object inspector, set the ButtonWidth to 0 and it will disappear.

Set the position of the TasnNumEnter object so that Left = 128, Top = 16 and Width = 64. The Height value
does not need to change since it should be 21 automatically.

You might want to check that you can activate any object on the form by clicking on it. So, if you click on the
Label object the grabber blocks will appear around the text you entered previously and the properties for that
object will appear in the Object inspector. Make sure you click back on the TASNumEnter object before you
continue.

In this object there are a few extra properties that merit attention. The first we’ll look at is Name. Each object

you put on your forms will have a name. If you should need to access that object in your program, this is the
name the command or function refers to. You should get into the habit of naming your objects logically. So, for

Page 25

Addsum TAS Premier 7i Tutorial

example, start the name of this object with “num” since it’s a numeric entry field. Next, you might use
something similar to the field that will interface to this object, or what it actually represents; so, in this case, use
OrdNum (for Order Number). This will make the Name = numOrdNum. Using a variation of upper and lower
case characters makes the name easier to read, but it makes no difference to the program. You could’ve used
NUMORDNUM or numordnum; each would refer to the same object. Notice that we didn’t use any
underscores or periods. You could use underscores if it makes more sense for you to do so. Periods are not
acceptable at all since they are used to separate pieces of the object name internally. So, put “numOrdNum” into
the Name property.

In the TASNumEnter object there is a special DisplayFormat property to control how the number value is
displayed. Since this field will contain a value that will only be positive and there are no decimal characters,
you want to set DisplayFormat = 0. You will see the value in the visible representation of the object change as
soon as you press the ENTER key.

Next look for the property called FieldName. This property will tell the object which field to interface to in your
program. You don’t have to put a field name into the object, but if you don’t you’ll have a much harder time
getting the information in and out and none of the events will work.

Field Name Lookup

The easiest way to choose a field name is to click on the ellipsis (3 dots in a button) that will appear in the
property entry block when you click on FieldName. Do that now and the dictionary lookup screen will appear.

Click on the Data Files drop down box down arrow. A list of FDs will be displayed. Click on SALES.
This first object is going to be connected to SONUMBER. It’s already highlighted, so just click on the OK
button. The field name will be placed automatically in the FieldName property.

NOTE: The next time you load the FieldName search editor the list will start with the FD you last searched.
This will make putting a series of fields on your form much easier.

Now you need to put the rest of the objects on the form. The Labels are the easiest so we’ll list those first. All
you have to do is place them on the form, make sure they are in the right location, and enter the correct caption
(use the list in the box below).

Top Left Caption
24 360 Date:
72 31 Customer Code:
120 38 G/L Acct Num:
160 76 Amount:

Next come the entry objects. Each object is given its own paragraph. We start with the object type and then list
each of the properties and what you should set as their value. The properties are set in bold and the values are to
the right of the equal sign. Any special notes will be given where necessary.

TASDateEdit: Name=dateSODate YearDigits=dyTwo Left=400 Top=16 Width=88 FieldName=SODATE
TASEnter: Name=entSOCust Left=128 Top=64 Width=64 FieldName=SOCUSTCODE
TASEnter: Name=entGLAcct Left=128 Top=112 Width=96 FieldName=SOGLACCTNUM

TASNumEnter: Name=numAmount Left=128 Top=152 Width=96 FieldName=SOSALESAMT

TASEnter: Name=entCustName Left=264 Top=64 Width=227 FieldName=CUSTNAME
TASEnter: Name=entCustComp Left=264 Top=88 Width=227 FieldName=CUSTCOMP
TASEnter: Name=entCustAddr Left=264 Top=112 Width=227 FieldName=CUSTADDR

Page 26

Addsum TAS Premier 7i Tutorial

TASEnter: Name=entCustCity Left=264 Top=136 Width=227 FieldName=CUSTCITY

TASEnter: Name=entCustState Left=264 Top=160 Width=24 FieldName=CUSTSTATE

TASEnter: Name=entCustZip Left=296 Top=160 Width=91 FieldName=CUSTZIP

TASEnter: Name=entAreaCode EditMask="!\(000\);0; ” Left=392 Top=160 Width=39 FieldName=CUSTAREA
NOTE: This is the first time we used the EditMask property in a TASEnter object. The EditMask

above tells the program to put parentheses around the entry and, if the user enters anything, it
must be a numeric character. The 0 after the first semi-colon tells the object not to save the
parentheses, since these are for entry only. There is a space character after the second semi-
color. It’s very important that you include this extra space. It tells the object to use the space
character as the default input character. You must have some sort of character in this location;
we chose the space character. For more information about the EditMask property refer to the
help file. Please be very sure that there are no spaces before the leading ““!”” in the EditMask
field. If there is your data will not display properly. If you use the built-in EditMask editor it
may put an extra space at the beginning of the mask. Don’t include the quote marks at the
beginning and end of the EditMask property value. They are there strictly to show you the
extra space at the end.

TASEnter: Name=entPhone EditMask="1000-0000;1;” Left=440 Top=160 Width=72 FieldName=CUSTPHONE
TASNavigator: Name=navSO Left=128 Top=200 Width=232 AfterActionFocus=numOrdNum ClearRecOnSave=Checked
TButton: Name=btnExit Left=456 Top=200 Width=75 Caption=E&xit

When you’re done the screen should look something like this:

PEEHE S) ©) (9

- Customer Coder oM150Cus] L famCusiName [
Cooiiooiioiiooiiooiiiirooins lentCustComp L
GfLAcct r-\];_”.,n.:|entGLAc|:t t entCustAddr
LLLLLoLooo Do entCustCity A,
i Amount S0.00 | omowetzy O] - |

Saving the Sales form

The next step is to save this form to disk. Click on the Save button, the save file dialog will appear. Enter
SOENTRY for the File name value and click on the Save button. The form will be saved to disk and the name
on the tab will change to SOENTRY, if you look at the bottom of the editor screen, you will see the full path
and name for this file.

Page 27

Addsum TAS Premier 7i Tutorial

You’re done with the first part of creating this program, the form. The next step is to create the source file for
the program that will work with the form.

Create the Program Source File
Click on the Program button, then click New. A blank file will appear.

On the right side of the screen you will see a tree listing of all the commands and functions for Addsum TAS
Premier. As with a standard tree structure, some of the items (commands only) have a plus (+) sign to the left of
the entry. If you click on this symbol the options for the command will appear.

If you double click on a command it will be inserted in your code at the current cursor location. If you double
click on a command name that has sub-options, the entire command, including all the sub-options, will be
inserted into your source file. You can hide or “un-hide” the command tree using the check box in the bottom
right hand corner of the screen.

The source editing form is very similar to a standard Windows® editor, except that the lines don’t wrap when
you reach a certain line length. There are a couple of other options that are unique to a source code editor that
you may not be familiar with:

Goto Line: Each line in your source file has a line number. The numbering starts from 1 and the lines are
numbered sequentially, including all blank lines, etc. The current line and column location are
displayed in the left column immediately after the source editing area. To go to a specific line
press the CTRLAG keys. A dialog box will come up and you can enter a line number.

Bookmarks: You can put up to ten different bookmarks in the source file. These are not saved with the source
file, but are active as long as the file is being edited. They are helpful because they allow you to
mark a specific line. Then you can return to that line by pressing the appropriate keys or choosing
the bookmark from the Bookmark menu option at the top of the screen When you set a bookmark
on a line a small block with the appropriate number (0-9) is placed in the gutter (space to the left of
the editing area).

To set a bookmark from the keyboard, press the CTRL+K+number keys where number must be 0-
9. To return to the bookmarked line press the CTRL+Q-+number key. To turn off a bookmark
press the same CTRL+K-+number keys you used to set it. Also, you can ‘move’ a bookmark to
another line by doing the same on a different line than it was originally set.

Undo/Redo: If you make changes to the source file that you find you really don’t want, the easiest way to get rid
of them is through the Undo feature. This option (along with Redo) is on the Edit menu. To undo
changes from the keyboard enter the CTRL+Z keys. To redo (reverse the undo) enter the

SHIFT+CTRLA+Z keys.

Find: Standard Windows® find option. This is on the Edit menu. From the keyboard use the CTRL+F
keys.

Replace: Standard Windows® find and replace option. This is on the Edit menu. From the keyboard use
the CTRL+R keys.

Lookup: An option unique to Addsum TAS Premier is the ability to search for field names using the same

lookup routine you first saw in the screen editor. This option is also on the Editor menu or you can
enter the CTRLA+L keys. The field lookup dialog is displayed. If you choose a field (double click
on the field name or press the OK button) it will be inserted into the code at the cursor location.

Convert Remarks: Remarks are messages for the future that you, or someone who might follow you, will refer

to when trying to figure out what you were doing in a piece of program code. The more remarks
you make the easier it will be to maintain or modify the program in the future. In Addsum TAS

Page 28

Addsum TAS Premier 7i Tutorial

Premier there are two ‘normal’ ways of specifying remarks. If the remark is going to be short, a
single line or less, you would use “//”” (two forward slashes). Everything after the remark, on that
same line, will be ignored when the program is compiled.

The second option is when you’re going to have a remark that is going to take multiple lines. You
can use the // remark at the beginning of each line or you can start the remark with “(*”
(parenthesis + asterisk), and it will continue over as many lines as you wish until you put the
closing characters, which are the “*)” (asterisk + closing parenthesis).

In TAS 5.1 the semi-colon was the remark character, and that will still work in the compiler.
However, the source editor doesn’t recognize that as a remark. So, if you choose this option, the
editor (on the Edit menu) will change all of the old remarks (;) to new (/).

Enter the Actual Code Lines

The actual code lines for this program are fairly simple. The code breaks down into five different sections:
Form, Open Files, Finding Customers, Saving Records and Exiting the Program.

Form Section in Source Code

The forms (and report forms for that matter) are not incorporated directly into the final compiled program, for
reasons we explained previously. However, you still need to tell the source code what the names of the screen
and report forms are. This has two purposes. The first is that during compilation the program will check the
forms and will make sure that any field referred to by that form exists in the data dictionary or has been defined
in the program. It also adds the field to the list of fields used in the program. The second purpose is that by the
location of the form reference, the program is told which screen should be loaded when the program is run.

Add the following line:
#Winform SOENTRY

This is the line that tells the source code to use SOENTRY.DFM as its main screen. Notice that the name of the
form and the source file (the comment above) are the same. This isn’t required but you’ll probably find it easier
to maintain your programs if the screen and report forms use the same or similar names as the source file.

The “#” (pound sign) at the beginning of the line tells the compiler that this is a Compiler Directive. This isn’t
actual executable code but is a directive or reminder to the program of something that has to be done. In this
case, this is the form that needs to be checked and loaded when the program is run (since it’s the first form
listed). Generally, even if you have multiple forms, you should list them at the top of the source file. Then you
will always be able to quickly and easily check which files need to be included with the finished run program.

The “winform” is a particular directive which tells the compiler that the next item on the line is a name of a
form. Always put at least one space between winform and the form name.

Next is the form name of “SOENTRY.” Notice that there are no quote marks around the form name. This is
what we call a “special alpha constant.” They are used throughout Addsum TAS Premier in different commands.
Most commands allow variables to be used and, in that case, you would’ve typed the name surrounded by single
or double quotes. However, in this case, the compiler wants the actual name, not a variable. Notice also that
you don’t include the path or extension. The compiler assumes both. You should always have the form file in
the same subdirectory as the source file. And, when you run the program, you would have the form file in the
same subdirectory as the compiled program.

Open Files Section in Source Code
Next we’re going to open the appropriate files: CUSTOMER and SALES. Each form has four different events

that can be used at different times. Two of them are executed when the screen is first displayed by the program.
These are the OpenFiles and OnStart events. Events look for line labels in your program that match either what

Page 29

Addsum TAS Premier 7i Tutorial

you’ve entered, in the case of forms, or a combination of the object name and event type in the case of most
other objects.

First we will add The OnOpen event and code. These commands will be added between the line label (defined
below) and the RET command.
Copy the following lines into your source file, two or three lines below the #winform code.

OnOpen:
define cust hndl,sales hndl type i
openv 'customer' fnum cust hndl
openv 'sales' fnum sales hndl
navigator 'navSO' fnum sales hndl key sonumber
ret

For CodeBase files in a mixed system, specify ext 'C' at the end of the openv statements.

The first line is the actual line label. It starts with the first non-whitespace character (whitespace characters are

spaces, tabs, etc., anything that doesn’t print) and continues until the colon (“:””). The colon is not part of the
line label but does specify that what comes before is a line label.

The define command creates two temporary fields, cust hndl and sales hndl, that are active while this program
is run. We’ll use these two fields to refer to the files elsewhere in the program. Typically these types of fields
are defined as type I (integers).

The next two lines are the actual file open commands. These tell the program to access these files and prepare
them to be used.

The next line is a special command that links one of the files that was just opened to the Navigator object on the
form. After you set the fnum (or file number) and key value (in this case you want to use SONumber), the user
will be able to find the appropriate user record by clicking on the navigator button.

The most important line is the last. You must always return from an event or a subroutine with a RET -
ALWAYS! The best way to remember this is to imagine that through the form the user controls the program
(this is also known as Event Driven Programming). If you don’t return (RET) from a subroutine the user will
never gain back control. Sometimes you may want this to happen; however, if the user doesn’t have control they
can never exit the program, will get very frustrated, will start hitting CTRL-ALT-DEL, etc. Then you will get a
call. So always try to keep your subroutines as short as possible and always, always return.

To complete this event you need to save the label name in the form. So, click on the Screen button. If you have
already closed the form, for whatever reason, it’s very easy to get it back. Click on the down arrow right next to
the Open button. A list of recently opened form names should appear. Your SOENTRY file should be at or near
the top. Just click on that name and the screen will load.

In the properties for the form, find the property OpenFiles. In the entry field for that property, enter OnOpen;
this will link it to the same label in code.

NOTE: 1f you make changes to the form don’t forget to click on the Save button. Changes made to a form are
not saved until you click on the Save button. Nothing will happen to the form, but the appropriate event will be
called when the program is run. If the form has been modified the name of the form in the tab will be
highlighted.

This is it for the OpenFiles section. Don’t forget, if you have questions about the specific commands that we use
please refer to the help file. You can search for any command using the command name as provided here.

Find Customers in Source Code

Page 30

Addsum TAS Premier 7i Tutorial

Each time the user enters a customer code (SOCustcode) you will want to find the corresponding record, if it
exists, in the CUSTOMER file. This is very easy to accomplish.

Leave a couple of spaces after the last section and enter the following lines:

entSOCust.Change:
findv m fnum cust hndl key custcode val SOCustcode
ret

The most important part of the code section above is the label at the beginning. This is a very good example of
a standard event label. This one will be called each time the user makes a change to the field value. If the
standard entry to this field was very long, or if there were lots of fields on the screen, you might do this a
different way since each time the user enters a character this routine will be called. However, in this case there
are only three characters that can be entered, and it will make a vast difference for the rest of the program. For
example, each time the user finds a record using the Navigator, the CUSTOMER record will be updated
automatically.

The makeup of this label is very simple. The first part is the object name, in this case “entSOCust.” The second
part is the event name, in this case “Change.” Between the two parts is a period (“.””). At the end of the label is
the standard colon (*“:””) that defines this as a label to the compiler. This is standard event label notation and,
except for changing the object name or the event name, this is exactly how you will start event routines in your

code.

The next line is the actual find. It tells the file manager to find a record in the file using the file number
represented by the variable CUST HNDL. This value was set in the OPENV command, and the key
CUSTCODE. It needs to find the exact match using the value in SOCUSTCODE. If no record is found, no
error will be displayed.

As with the previous subroutine, the RET command sends control back to the form.

If the record is found the CUSTOMER fields on the form will be automatically appear. You do not need to do
anything else.

Exiting the Program

The last section of code we’re going to create is the part that tells the program to quit when the user clicks on the
Exit button. You really didn’t need to include this, or the button, since the user could click on the standard

Windows® close button in the upper right corner. However, most “standard” programs have such a feature so
we’ve included it here.

The code, as the others, is very simple and is listed below:
btnExit.click:
quit

ret

The event label is in standard format. In this case, the event is “click.” This is the only event for the Button
object.

The next line tells the program to quit or exit. And, of course, there’s the RET command to return from the
event.

Saving the Source File

The next step is to save the program to disk. As you did with the form, click on the Save button. Enter
SOENTRY as the file name.

Page 31

Addsum TAS Premier 7i Tutorial

Compiling the Source File

Before a program can be run in Addsum TAS Premier it must be compiled. The compiler checks to make sure
all commands are correct, that fields not in the data dictionary have been defined, etc. It also puts the programs
into a special format that allows the runtime to execute it faster, and makes it so your source code is protected if
you don’t want to release it to the user.

To compile the program click on the Compile button.

Your program name will already be in Program Name field, so just click Compile. After the process is
complete a new tab will appear between Main Screen and Defaults. If you entered the code correctly it should
say No Errors. If you didn't, and the compiler found an error, it will say Errors. If it does, click on that tab and
you should be able to quickly find what went wrong. Fix it and recompile the program.

Once the compiler has successfully compiled the program, the Run Program button will be set as the default.
Again, press the ENTER key or click on the Run Program button. When you do, you should see the same
screen you created without the dots on the form itself.

Enter 101 for the Order Number and press ENTER. Click on the button to the right of the Date entry field. A
calendar will be displayed with today’s date highlighted. Click on the button again and the date will be set to
today’s date. Press the ENTER key and the cursor will move to the Customer Code field. Enter 002, press the
ENTER key, and the customer information for Smith, John should appear. Enter 500 for the G/L Acct Num and
press the ENTER key. Enter 150.99 for the Amount and click on the Save button in the Navigator (it looks like
a check mark).

After saving, the SALES and CUSTOMER fields will be cleared; that is, they will be cleared if you previously
checked the ClearRecOnSave property in the Naviator. If you prefer to leave it un-checked, the information
will not clear.

If you click on the First button in the Navigator (far left) you will redisplay the record you just saved. Even the
CUSTOMER information will redisplay. This was due to the Change event we included for the Customer Code
field above.

Let’s say that the user wants to add a new customer. This would be a logical place to do so, but the program will
save only the SALES information when they click on the Save button. Let’s add the code to your program that
will update the CUSTOMER file also.

Click the Exit button to quit the SOENTRY program.
Saving Changes to the CUSTOMER file

The user will save records by clicking on the check mark button in the Navigator bar. However, this will save
only the record in the file that’s attached to the object via the NAVIGATOR command. So, it’s up to you as the
programmer to save the record in the CUSTOMER file via code. Fortunately, the Navigator object has an event
that will let you know each time the user clicks on the save button: the SAVE event. The following lines will
accomplish this; add them to your source a few lines below the btn.Exit code.

navsSO.save:
custcode = socustcode
save @cust hndl nocnf
ret true

The first line is the standard event label. In this case the Navigator name is “navSO” and the event is “save” and
we’ve separated the object name from the event with a period.

Page 32

Addsum TAS Premier 7i Tutorial

The next line makes sure the customer code value in the CUSTOMER file matches what you entered for the
SALES file. If you find an existing record, then both values will already be the same. However, with this line
here you will now be able to save new records in the CUSTOMER file.

The next line tells the program to save the record in the file represented by the file number in “cust_hndl.” It
also tells the command to not ask the user to confirm this save (nocnf). If this option were not included the user
would get two “Save?” questions: one from the Navigator object itself, and one from this save command.

NOTE: You can even eliminate the “Save?” question from the Navigator object by going back to your form and
clicking on the Navigator bar. Look at the properties in the Object inspector. One of them is “ConfirmSave”
and has been checked. If you un-check that property the user will never see a “Save?” question. Don’t forget to
save the form if you make a change. When you make changes like this you do not need to recompile the
program. However, if you do not save the form, the program will not know the change has been made.

The last line in this code section is a variation on the standard event return command. In this case we are
actually returning a value of “true.” This is called a Boolean value. Boolean values have only two possibilities:
True or False. In the case of events that expect a Boolean value returned, generally the True value tells the event
to continue, the False value tells it to stop, or not continue. If an event expects a return, it is documented in the
help file for that object. If you do not include the True or False value the event will act as though you returned
True.

In this case always return True, since you are not using this event to check whether or not to save the record; it is
being used to save the record in the CUSTOMER file.

It does not matter where you put this routine in your code. You can add it to the end, or put it before the Exit
routine. Location is strictly dependent on what works best for you, since each routine is considered almost like a
separate program

NOTE: If the user answers No to the original save question from the Navigator, you will never get to this event.

Since you’ve already saved the source file once, you can let the compiler do that for you from now on. Just
click on the Compiler button. The correct source file name should automatically appear in the program name
entry box. Press the ENTER key to compile the program. Before the compiler actually does its work it checks
to see if the source file is active (which it is) and if it’s been modified (which is has) and saves the file back to
disk before it is actually compiled. So, this saves you the work of saving the program before it’s compiled.
Unfortunately, this doesn’t apply to forms. You have to save those yourself.

Further Modifications to the SOENTRY Program

Let’s make a couple of other changes to the form and the program. If you do not have the screen loaded then
click on the Screen button. Then click on the down arrow to the right of the Open button. A list of forms you
have edited should appear. At this time it’s probably just the single screen SOENTRY. Click on the appropriate
file name and the screen will be loaded into the editor.

The first change to make is to have the date field default to today’s date. Click on the Order Date (dateSODate)
object. In the Object inspector find the property DefaultToday. Click on the check box to the right of the
property name (if it isn’t checked already). Now, the next time you run the SOENTRY program the date will
default to today without any other entry.

Now click on the Order Number (numOrdNum) object. You are going to make two changes here. Scroll down
until you get to the ValidExpr property. In this property entry box add the following line:

SONumber<>0
As with other code, upper or lower case does not matter. What this expression will do is check to see if the

SONumber, the field attached to this object, is 0 or something else. If it’s 0 the expression returns False. If it’s
anything else, it returns True.

Page 33

Addsum TAS Premier 7i Tutorial

In the ValidMsg property click on the ellipsis button. In the text editing dialog enter the following: ““You must
enter a number here.”

Again, click on the OK button to save the message to the property. This will appear when the
VALID CHECK() function returns False. We are going to add that function to the source file.

Now save the form to disk by clicking on the Save button. This is very important since the compiler will not be
able to see the new ValidExpr property value unless the form is saved. You might also want to close the form
since it will be updated by the compiler and you don’t want to save the ‘old’ version over the ‘new’ version that
the compiler will create. See the ValidExpr property in the help file for more information.

Now, click on the Program button. As with the form, if the program is not loaded you can load it by clicking on
the down arrow next to the Open button and then choose the appropriate source file.

Immediately after the navSO.Save line insert the following line:

if .not. valid check() then ret false

This line will execute the VALID CHECK() function, and if it returns False (one of the ValidExpr property
values returns False) then it will exit the save subroutine and neither of the files will be updated (by returning
False from the subroutine it tells the program to not save the record in the SALES file, also). If a ValidExpr
evaluates to False, the ValidMsg for that object will be displayed and focus will return to that object, forcing the
user to enter something other than 0, in this example. The new save subroutine should look like this:

navsSO.save:
if .not. valid check() then ret false
custcode = socustcode
save @cust hndl nocnf
ret true

Now click on the Save button in the Navigator (check mark) while keeping the Order Number value as 0. You
will get the message you entered above as the ValidMessage and the cursor will return to the Order Number
field.

What’s important about this? The use of the ValidExpr property/ VALID CHECK() function gives you a quick
and easy way to check all important fields at one time without having to remember each and every field. In
previous versions of Addsum TAS Premier you could force your user to stay in the field until a proper value was
entered. With the change to an event-driven system you want to give your user as much flexibility as possible.
You can use the VALID CHECK() function anywhere. If there are multiple ValidExpr’s to check, the program
will check each one. If multiple fail the user will be returned one at a time to fix them before continuing. This
is an important feature of TAS Premier and one that you will probably use quite often.

The last item to notice is that when you load the form, the date field now has today’s date instead of 00/00/00.

We still have one missing feature: What if the user wants to find the order in a group of orders? Let’s put
together a quick lookup.

Add a Lookup Grid to the Sales Program

The first step is to create a new form. If you are not in the screen editor, click on the Screen button now. Then
click on the New button to create a new form. Make the size of this form 296 pixels high (ClientHeight) and
552 pixels wide (ClientWidth).

While you are on the form, we’ll make a couple more changes. These are:

Caption=Sales Order Lookup OnStart=SOLookupStart

Page 34

Addsum TAS Premier 7i Tutorial

Note that a line label is included for the OnStart property for this form. Why not just use START, since it’s the
default? To keep the program from calling the same subroutine for two different forms, unless you want it to,
the program defaults to START only for the first form. All subsequent forms have to specify an OnStart line
label, which has been done here.

NOTE: While you’re placing objects on the form, you may exceed the edges of the form and scroll bars will
automatically appear. Just make the form larger and then return to the correct size. The scroll bars will

disappear automatically.

Place a TASNumEnter object on the form at the location Left=8 and Top=8. The Width should be 80. This is
going to be our FastSearch™ field. The rest of the property entries are:

Name=numOrdLU DisplayFormat=0 FastSearchType=fsRec

We do not have to assign a field to this object since it’s only going to be used as a FastSearch™ field.
Next drop a TASDataGrid object on the form. The general properties are as follows:
Name=dgSOLookup Height=216 Left=8 Top=40 Width=536 FastSearchFld=numOrdLU

Click on the + next to the Navigation property name. Now check the box next to the AdvanceOnEnter
subproperty. You can click on the — next to he Navigation property name to close up the subproperty options.

By setting this subproperty, you tell the program to do an automatic select if the user is entering characters in the
FastSearch™ field and presses the ENTER key.

Now display the Option subproperties by again clicking on the + next to the property name. Check the box next
to the goDrawFocusSelected subproperty.

We now need to add the columns to the grid. To do this, click on the Columns property and then click on the
ellipsis button that is displayed. A special column editor will appear. A full explanation of this property editor is
in the help file.

When the property editor appears, it is already on column 0 (first column in the grid). The property value
entries for this column are:

Alignment=taRightJustify Name=SONum Header=Order Number Width=85 FieldName=SONUMBER
As you modify these properties, you will see the appropriate changes to the grid, including header and width.
We actually want five columns total in the grid, so you need to add four more. To add a column, click on the +

button at the top of the column property editor box. Column 1 should appear in the box and a new set of
properties in the Object inspector. For each column listed below, click on the + button to add the column to the

grid.

NOTE: 1If the Alignment property is not given, it should be taleftJustify, which is the default value.
Column 1: Alignment=taCenter Name=SODate Header=Order Date Width=76 FieldName=SODATE
Column 2: Name=SOCust Header=Customer Code Width=95 FieldName=SOCUSTCODE

Column 3: Name=SOCustName Header=Customer Name Width=111 FieldName=CUSTNAME

Column 4: Alignment=taRightJustify Name=SOAmt Header=Order Amt Width=85
FieldName=SOSALESAMT

Page 35

Addsum TAS Premier 7i Tutorial

When you are finished creating the columns, click on the close button at the upper right corner of the property
editor. The properties in the Object inspector will disappear until you click on one of the objects in the form (or
the form itself).

When this form is loaded, you will use the LOAD MODAL FORM() function. A modal form, in Windows®
parlance, is simply one that remains active until the user does something that closes the form. To do that, you
have to send a modal response to the form. This can be accomplished in two ways: you can use the

SET OBJECT command or include one or more buttons on the form that have their ModalResult value set.
Then, if the user clicks that button, it will send that value back to the form and the form will exit without any
further action on your part. So, the last objects you are going to put on the form are these two buttons:

Button: Caption=Sclect Name=btnSelect ModalResult=mrOK Height=25 Left=376 Top=264 Width=75
Button: Caption=Exit Name=btnLUExit ModalResult=mrNO Height=25 Left=464 Top=264 Width=75

The last step is to save the form. As with the SOENTRY form, click on the Save button and enter SOLOOKUP
for the file name.

Next you’re going to give the user a way to call this form. You could put a button on the SOENTRY form, but
this tutorial uses a different option. If the SOENTRY screen is already loaded, then click on the tab for that
form. If it isn’t, then load the form as previously described.

Click on the Order Number (numOrdNum) object. Look for the KeyTraps property. Click on the property and
then click on the ellipsis button. A Key Traps property editor will be displayed. As with all other property
editors, this is documented in the help file.

You’re going to add a key trap to this form. Then, when the user presses the appropriate key (in this case F2),
the line label you specify will be called in your program, just like a normal event.

Click on the box (also known as a cell) in the Trap Name column. A drop down box arrow should appear. You
can either enter F2 directly or click on the drop down arrow and a list of available Key Trap Names will display.
Press the ENTER key and the cursor will move to the Label Name column. Enter SOLOOKUP here. The
property editor should now look like the following:

Click on the Ok button and you should see F2[SOLOOKUP in the KeyTraps property box. Next, click on the
KeyTrapHint immediately above. Again click on the ellipsis button and, in the text property editor enter the
following line:

Press the F2 key to lookup existing orders.

Click on the OK button to save it, then on the Save button to save the form. You are finished with the screen
changes.

Click on the Program button, and, if the SOENTRY source file is not loaded, load it now.

You need to put the code in your program that will be executed when the user presses the F2 key. Add the
following code a few lines after your existing code:

SOLookup:
if load modal form('SOLookup')<>mrOk
clr @sales hndl
clr Qcust hndl
endif
ret

The label is the same you entered in the Key Traps editor. The LOAD MODAL FORM() function loads the
SOLookup form and will not return until the user either selects one of the available order records or clicks on

Page 36

Addsum TAS Premier 7i Tutorial

the Exit button. The IF command compares the returned value and, if it’s not mrOK (the user clicks on the Ok
button or presses the ENTER key), the records of both files are cleared before the user returns to the calling
form. As with other event routines, this one also ends with a RETURN command.

The next subroutine you need to apply is “turning on” the lookup data grid. This must be done before any
records will be displayed. To accomplish this add the following lines:

SOLookupStart:
wlistf 'dgSOLookup' setup fnum sales hndl key sonumber
ret

The line label is the same one you specified in the OnStart property for the SOLookup form. The WLISTF
command is used in connection with the data grid when you are accessing records from a data file. This is in the
OnStart event so that the grid will be active when the lookup form is displayed.

The last subroutine you have to add will be executed if the user presses the ENTER key. All it does is set the
Modal_Result property to mrOK. The GET _FORM_ NAME() function is included as part of this command line,
since we don’t know the name of the form like we do for the other objects. Add the following lines:

dgSOLookup.Select:
set object get form name() property 'modal result' value mrOK
ret

There is data from the SALES and CUSTOMER files in the lookup grid. The grid knows about the SALES file
from the WLISTF command, but nothing about the CUSTOMER file. So, you need to tell the program to get
the appropriate record in the CUSTOMER file for each record in the SALES file. Look at the routine that is
called when the SOCustCode field changes. This will not have any effect here, due to a number of technical
reasons; however, you can use the same routine. All you have to do is put an extra line label before the routine.
Change the entSOCust.Change routine so that it looks like this:

dgSOLookup.Display:

entSOCust.Change:
findv m fnum cust hndl key custcode val SOCustcode
ret

This tells the program to call the same routine for both the Display event for the lookup grid (dgSOLookup)
and the Change event for the SOCustCode field (entSOCust).

NOTE: Line labels are not true executable commands. They are just pointers to a specific location in the
program. This means you can put as many line labels as you need at the beginning of a subroutine. Each one

will start with the first executable line after the label.

Your modifications are now complete. Save and compile the program by clicking on the Compile button. When
the compilation is complete, and assuming you don’t have any errors, try running the program.

With the cursor in the Order Number field, press the ALT-F1 key. The KeyTrapHint that you entered should be
displayed. Press the ENTER key, or click on the Ok button, to clear the message. Now press the F2 key. The

lookup screen should appear.

As you enter an Ord Num value, the selection line will move to the appropriate record. Then if you press the
ENTER key the lookup screen will disappear and the chosen record will be displayed in the SOENTRY screen.

This completes part 3 of the tutorial.

Page 37

Addsum TAS Premier 7i Tutorial

PART 4 - CREATING A REPORT

In this section you will create a report showing sales and customer information. You will be able to specify the
sort field at runtime and a range of customers to include on the report.

To create reports with Addsum TAS Premier, you'll probably always start with the Edit Report Format
program. Then, after you have the format completed, return to the Source Editor, and create the code necessary
to setup the data for your report. This is similar to the Screen Editor/Source Editor combination, except that you
cannot change Report Format properties at runtime.

To get started click on the Reports button. A completely new window will open up and something similar to the
screen below will appear:

As with the Screen Editor, the higher your resolution, the more you will see on the screen.

There is just a single palette in the Report Editor. There are actually only eleven objects that can be placed on
the format. However, there are several options that will make your reports look better, along with menu options
that will add or subtract bands from the format.

Every report is made up of bands. These will control what will print, where it occurs on the report, etc. When
the report format is first displayed there are three bands: Header, Detail and Footer. Many reports will use only
these three.

Report Editor Menu Options

You can easily control the bands that make up your report from the menu. Click on the Report menu item at the
top of the screen. Notice that the Header and Footer items are checked. If you un-check either of these (by
clicking on the menu item), the band will disappear on the form. Click on it again and it will be back. There is
no Detail option — if you don’t have a Detail band, you don’t have a report! The Header band will print each
time you start a new page and the Footer band will print at the bottom of each page.

Two other bands are also part of that menu option: Title and Summary. The Title band prints once at the very
beginning of the report. The summary band also prints once, only at the very end of the report.

The Groups option allows you to group records together. This allows you to force a page break when a group
changes, keep group records together, and create GroupHeader and GroupFooter bands that print with the
Group. If you are going to print checks, invoices, statements, or other similar reports you will end up using the
Grouping feature. If you don’t use it for those things, you will have items from one check on another!

Portrait and Landscape are mutually exclusive; you choose one or the other. Portrait prints the report in what
might be called “standard format™ (i.e. tall and narrow). Landscape turns the paper 90 degrees so that the paper
will print “sideways” or short and wide. If you need to print a very wide report, try Landscape; otherwise you
will probably always use Portrait, which is the default.

Units allows you to chose the measurement system for the report. This defaults to Inches. If you click on the
Units menu item, you will see the available options. You can switch to another value at any time and all of the
properties where a position value is necessary will be recalculated.

If you click on the View menu item, you will see two options listed. The first, Rulers, should be checked. If you
click on this option it will remove the rulers from the report form. You will probably always want the rulers to
be displayed.

The other option in View is Grid Options. This will allow you to choose the granularity of the grid that overlays

the report form. This is the same as the grid in the Screen Editor, except it doesn’t display the dots in the Report
Editor. In most cases you will leave these values unchanged. Click on OK or Cancel to close the window.

Page 38

Addsum TAS Premier 7i Tutorial

The Edit menu is fairly standard and should be familiar to you from other Windows® programs.

The File menu is also standard, except for a few options specific to the Report Editor. These are the list of the
most recent report formats at the end of the menu. If you wish to reload any of the report formats listed, just
click on the file name.

Another option in the File menu is Setup form. This acts the same as Page Setup in other programs. You can
make this report for a specific printer by choosing the printer here. However, in most cases the printer should be
set to Default, allowing the user to choose at runtime. The Document Name should always be Report. Duplex
specifies printing on both sides of the paper. Make sure your printer allows this before you choose this option.

The Paper Size tab allows you to choose a size other than the standard 8.5 x 11 inches. As explained above,
you can also choose Portrait or Landscape and see a graphic representation of what it looks like.

The Paper Source tab allows you to choose where the paper will be fed. These are general options and can be
safely ignored.

Layout allows you to split the page into columns.

All new report formats start as a single column. However, if you are going to print labels, you'll want to change
the Columns value to match the number of columns of labels on the page. You will probably also want to
remove the Header and Footer bands since they won’t change size. Change the Columns value to 4 and notice
what happens to the report format (make sure you’re starting with a new form!). You should see the Detail band
becoming narrower, while the Header and Footer bands stay the same size. You will also see the ColumnHeader
and ColumnFooter bands. These have the same effect as the standard Header and Footer except they will print
at the beginning and end of each column. Don’t forget to reset the number of columns to 1 before you leave this

page.
The last tab is Margins:

In a default report all four margin values will be set to %4 inch. You can adjust those measurements as needed.
However, before you make them smaller, make sure your printer will be able to print closer to the edge of the

paper.

Once you have made your adjustments, click on the OK button to save or Cancel, clearing your entries.

A Simple Report

For your first report you are going to do something fairly simple: list the records in your CUSTOMER file. If
the Report Editor is not loaded, do so now by clicking on the Reports button on the main Addsum TAS Premier
tool bar. The default Report Editor screen should be displayed. The process for putting objects on the form is
very similar to what you did in the Screen Editor with a couple of exceptions: first, you will find the number of
properties for each object is less than what you had in the Screen Editor; and second, the report format area is
broken up into three blocks or bands, as explained above.

NOTE: 1If you have further questions about the different objects or bands in the Report Editor, please refer to the
Addsum TAS Premier Help file. You can access this in the Report Editor by clicking the Help menu option and
then the TAS Pro 7 Help item. This is the same Help file that you can access in the Screen/Source Editor.

Click somewhere in the report form above the bar that says “* Header.” The “*”” denotes that the Header band is
above this bar., as are the Detail band that comes next and the Footer band that is at the end.

When you click in the Header band, notice that the Object inspector now displays information about the Header.
Click in the Detail and Footer and you will see the properties change. Now move the mouse cursor so that it’s
directly over the bar that says “* Header.” The mouse cursor should change from the standard arrow to a
double-headed arrow that is vertical instead of canted off to the left. While the mouse is positioned over the bar,

Page 39

Addsum TAS Premier 7i Tutorial

press down on the left mouse button. While holding the mouse button down, scroll the mouse up and down.
You should see a representation of that bar (just the outline) moving with the mouse. When you release the left
mouse button the size of the Header band should change, depending on where you moved the mouse. This is
how you resize the band.

NOTE: Sometimes you will make a change to the report that will create new bands on the page that have no
space that is automatically setup for them. A good example of this is a Group band. When it’s created the
GroupHeader and the GroupFooter band bar will be tight against the Header and Footer band bar. This means
that you will have to resize the band and make it larger if you want to put something in those bands. Always
look for the “*” and a name in the bar that specifies what type of band is above the bar. Even when the bars are
tight together you can still click on the bar of the band you want to increase and scroll down the screen.

NOTE: When you resize a band all the bands below move up or down automatically. As you create large
reports, you may move part of the report format off the page. A standard scroll bar will appear on the right side
of the editing area that will allow you to move the format up and down. The same applies if the format is too
wide to fit the area available.

The first step is to put a title in the Header band. Click on the Label object (the one that looks like an A by
itself) and click anywhere in the Header band. It should show a small object that says “Labell”. If you look at
the Object inspector, you should see TppLabel in the display box near the top and the properties appropriate to
this object should be displayed.

In the Caption property enter “A Simple Report.” When you press the ENTER key or otherwise move off the
property, that caption will take the place of the Labell name. This works just like the TLabel object did in the
Screen Editor. Now, click on the object and drag it to the top of the band so that it’s tight against the ruler.
Once you have it there, try dragging it down one step. You’ll see the snap-to-grid process working just like it
did in the Screen Editor.

Make the font a little bigger by clicking on the font size drop down box in the palette. Change the font size to
14.

Click on the “Center Horizontally” button in the palette above the format. This is the button that looks like three
books between bookends. The hint that appears when you hold the mouse over the button is: “Center
Horizontally in Band.” Your caption should now be centered in the band.

Drop a SystemVariable object below the label you added above. Notice that it uses the same font size that was
changed above; change the size back to 10. In the VarType property click on the down arrow and choose the
vtDateTime property. To finish with this object, click on the Center Horizontally button to center this object in
the band.

To the right of the report title, drop another SystemVariable. Set the VarType property to vtPageNoDesc. Set
Left to 7.25 and Top to 0.0833 (top should be the same as the report title).

NOTE: If you change the size or location of any object, including bands, by adjusting the object directly, the
new sizes/locations will not be updated in the Object inspector until you switch to a different object and then
switch back. The status bar at the bottom of the report format will give you up-to-date information.

Put the following Label objects on the report form in the Header band:

TppLabel: Caption=Customer Code Left=2.2 Top=0.6667 Font Size=10

TppLabel: Caption=Customer Information Left=3.5 Top=0.6667 Font Size=10

TppLabel: Caption=Phone Number Left=6.1 Top=0.6667 Font Size=10

Page 40

Addsum TAS Premier 7i Tutorial

Now you’re going to put fields on the report. Click on the DBText icon on the palette and drop it in the Detail
band (directly below the Header band). Set the Top property to 0 and the Left property to 2.2. Now double
click in the DataField property. The same dictionary field lookup grid that you are familiar with from the screen
and source editors will appear.

If the CUSTOMER file is not displayed as the initial choice, then click on the drop down button and choose the
CUSTOMER data file. Then double click on the CUSTCODE field. The value CUSTCODE {3} will be placed
in the DataField property. The {3} specifies that the field is three characters in size when displayed.

NOTE: You can also enter your own field names. Case doesn’t matter (upper or lower). As long as the names
you enter here match the values in the record or elsewhere in your program. Whatever you put here will be used
when running the report. You can even use arrays, so a legal DataField property value might be test[1] or
fld_Iname[cntr], etc.

The reason the program keeps the display size is to help you estimate the width you need when the report runs.
To set the default object width, double click on the Width property value. The object will change in size to
approximately 0.275. This might be a little narrow since the field will be all upper case characters, so increase
the Width to 0.33.

Now add the following fields to the report. The Top property value is provided, since the other fields will be
placed under one another. Make sure the Detail band has enough vertical room for the objects. If you need
some more space, just click and hold on the Detail band name bar and pull it down a little. It should be at least
1” in height or more. You will shorten it up when you’re done.

TppDBText: DataField=CUSTNAME Left=3.5 Top=0 Width=2.375

TppDBText: DataField=CUSTCOMP Left=3.5 Top=0.19 Width=2.375

TppDBText: DataField=CUSTADDR Left=3.5 Top=0.39 Width=2.375

TppDBText: DataField=CUSTCITY Left=3.5 Top=0.6 Width=2.375

TppDBText: DataField=CUSTSTATE Left=3.5 Top=0.8 Width=0.21

TppDBText: DataField=CUSTZIP Left=3.8 Top=0.8 Width=0.95

TppDBText: DataField=CUSTAREA Left=6.1 Top=0 Width=0.29

TppDBText: DataField=CUSTPHONE Left=6.5 Top=0 Width=0.76

Move the Detail band name bar up so that it’s directly under the last text field you put on the form (State & Zip).
If you click on the band, you should see the Height value as about 0.9687. Notice that the PrintHeight property
has been set to phStatic (the default value). If you add to the Height value, there will be a space between the
blocks of data when it prints. If there is no space, then there will be no space between the records when they

print.

There is no need for a Footer, so turn it off by clicking on the Report->Footer menu item. The check mark next
to the name will be removed and the Footer band will also.

Click on File->Save. The standard save dialog will pop up. Enter SimpleReport for the file name and click on
the SAVE button.

Next you need to add the code to your program to link in the report format. Click on the Addsum TAS Premier

button in your task bar to activate the screen/source editor. If the screen SOENTRY.DFM is not loaded, load it
now.

Page 41

Addsum TAS Premier 7i Tutorial

Add a Button to the screen with these properties: Left=376, Top=200, Width=75, Caption=Print,
Name=btnPrint. The button should be placed between the navigator and the exit button. Save the form.

Load the source file (SOENTRY.SRC) if it isn’t already loaded. Add the following line immediately after the
#WinForm line:

#WinReport SimpleReport

This has the same effect as the #WinForm compiler directive. It will load the report form during compilation
and will make sure that all of the fields used in the report will be part of this program, even if they aren’t used
anywhere else.

At the bottom of the current code, add the following:

btnPrint.click:
setup report buff rb num 1 reportname 'simplereport'
scan @cust hndl key custcode
output report data rb num 1
ends
print report
ret

The first line is the familiar standard event label. The second line tells your program to load the report form and
setup the first buffer.

NOTE: You must always set up buffer 1 first and specify the report name as part of that command.

The third and fifth lines (SCAN and ENDS) scroll through the customer file in customer code order. The line in
the middle (output_report_data) creates the buffer records that will be used to print the actual report. The fields
you have placed on the report form will be accessed to create the buffer records. The PRINT REPORT
command will do the actual printing. The last line, of course, is the standard RET from all event routines.

You can easily change the records that appear in the report by modifying the SCAN command. Restrict the
records printed or change the order in which the records appear by changing the KEY value.

Compile the program by clicking on the Compile button or by pressing the F9 key. After the program compiles
(assuming it compiled properly), click on Run Program. Click on the Print button (if the button doesn’t show up
on the form make sure you’ve saved it).

To print the report to a printer, click on the printer icon (far left). The next three icons and the percentage entry
field control how large the preview is on your screen and how much of the page you see. The second entry field
that is surrounded by navigator type buttons controls which page is displayed. You can enter the page number
directly or use the first page, previous page, next page or last page buttons. The Close button exits the print
preview.

Page 42

Addsum TAS Premier 7i Tutorial

PART 5 - ADDING A MENU TO AN ADDSUM TAS Premier PROGRAM

It’s very easy to add the standard Windows type menu to a form. Reload the SOENTRY.DFM file in the screen
editor if it’s not already loaded.

From the Standard palette tab drop a MainMenu object on the form. This is a non-visual object and will simply
place the icon on the form. Click on the ellipses next to the Items property in the object inspector. Click on the
button that looks like a plus sign (hint is Add Item). A Menultem will be placed in the tree and will appear at the
top of the form.

NOTE: When you start adding menu items, the screen may exceed the size you have allowed and
horizontal/vertical scroll bars will appear. Stretch the screen out from the lower right corner and the scroll bars
will disappear.

Click on the item (in the tree box) and you can change the Caption property directly. Enter “&File” as the new
caption. The “&” (ampersand) before the “F” in File tells Windows to allow the user to enter ALT-F to choose
this menu item. Press the ENTER key and File should replace Menultem at the top of the form. This is a
standard first file menu in any Windows program.

To add an additional top level menu item, click on the Add Item button again. To add a sub-level item, one that
won’t appear until the user clicks on the top level item, click on button to the right of the Add Item (it looks like
an arrow over the + symbol). Once again, click on the tree item that says Menultem and change the caption to
“&Print” and the Name property value to mniPrint (menu item Print). Now exit from the property editor (click
on the X in the upper right corner). Save the form by clicking on the Save button.

NOTE: If you click on the File menu item, at the top of the form, the Print option should appear just like a
standard drop down menu.

Reload the source file (SOENTRY.SRC) if it isn’t already loaded. Add the event label “mniPrint.Click:” directly
after or before the existing event label “btnPrint.Click:”. This will allow the user to either choose the item from
the menu or simply click the Print button.

NOTE: You cannot have two objects on the same screen with the same name. This means that you must have
multiple event labels if they both/all call the same routine.

Compile the program and run it. When you click on File and then choose the Print option, the report should
print just like it does when you click on the Print button.

The only difference between this simple example and more complex menus is the number of Menultems and the
event labels you add to your program.

This completes the tutorial. See the directory COMPLETED under TUTORIAL for the completed tutorial. To

look at other sample programs, see the SAMPLES directory as well as the SRC files in the TAS 7 installation
directory.

Page 43

	Customer File
	GETTING READY TO RUN THE TUTORIAL
	A BRIEF INTRODUCTION TO DATABASES
	Database Fields, Records and Files
	File Managers, DBMSs and ADEs

	PART 1 - CREATING A DATABASE
	Using the Maintain Dictionary Option
	Entering Keys for CUSTOMER Database
	Initializing the New File
	Choosing Fields to be Displayed
	Add a Record to a File
	Finding Records in a File
	Change (Edit) a Record
	Delete a Record from a File

	PART 3 - CREATING A NEW SALES PROGRAM
	Design your Database on Paper First
	Create the Form
	Data Page (formerly TASWin)
	Form Page

	Additional Page
	Object Inspector
	Adding/Moving Objects on the Form
	Multiple forms
	Saving/Closing forms
	Creating the Sales form
	Field Name Lookup
	Saving the Sales form
	Create the Program Source File
	Enter the Actual Code Lines
	Form Section in Source Code
	Open Files Section in Source Code
	Find Customers in Source Code
	Exiting the Program
	Compiling the Source File
	Saving Changes to the CUSTOMER file
	Further Modifications to the SOENTRY Program
	Add a Lookup Grid to the Sales Program

	PART 4 - CREATING A REPORT
	Report Editor Menu Options
	A Simple Report

	PART 5 – ADDING A MENU TO AN ADDSUM TAS Premier PROGRAM

